Problem 12-28

Two particles A and B start from rest at the origin $s=0$ and move along a straight line such that $a_{A}=(6 t-3) \mathrm{ft} / \mathrm{s}^{2}$ and $a_{B}=\left(12 t^{2}-8\right) \mathrm{ft} / \mathrm{s}^{2}$, where t is in seconds. Determine the distance between them when $t=4 \mathrm{~s}$ and the total distance each has traveled in $t=4 \mathrm{~s}$.

Solution

Because the particles start from rest at the origin, the initial conditions are $s_{A}(0)=0, v_{A}(0)=0$, $s_{B}(0)=0$, and $v_{B}(0)=0$. Use the given accelerations to get the velocities.

$$
a_{A}=\frac{d v_{A}}{d t}=6 t-3 \quad a_{B}=\frac{d v_{B}}{d t}=12 t^{2}-8
$$

Integrate both sides with respect to t.

$$
v_{A}(t)=3 t^{2}-3 t+C_{1} \quad v_{B}(t)=4 t^{3}-8 t+C_{2}
$$

Use the initial conditions to determine C_{1} and C_{2}.

$$
v_{A}(0)=C_{1}=0 \quad v_{B}(0)=C_{2}=0
$$

As a result, the velocities (in feet per second) are

$$
v_{A}(t)=3 t^{2}-3 t \quad v_{B}(t)=4 t^{3}-8 t
$$

With them, the positions can be obtained.

$$
\frac{d s_{A}}{d t}=3 t^{2}-3 t \quad \frac{d s_{B}}{d t}=4 t^{3}-8 t
$$

Integrate both sides with respect to t.

$$
s_{A}(t)=t^{3}-\frac{3}{2} t^{2}+C_{3} \quad s_{B}(t)=t^{4}-4 t^{2}+C_{4}
$$

Use the initial conditions to determine C_{3} and C_{4}.

$$
s_{A}(0)=C_{3}=0 \quad s_{B}(0)=C_{4}=0
$$

As a result, the positions (in feet) are

$$
s_{A}(t)=t^{3}-\frac{3}{2} t^{2}
$$

$$
s_{B}(t)=t^{4}-4 t^{2}
$$

The distance between the particles when $t=4 \mathrm{~s}$ is $\left|s_{A}(4)-s_{B}(4)\right|=152 \mathrm{ft}$. Now calculate the total distance that each particle travels in $t=4 \mathrm{~s}$ by integrating their respective speeds.

$$
\left(s_{A}\right)_{\text {total }}=\int_{0}^{4}\left|v_{A}(t)\right| d t \quad\left(s_{B}\right)_{\text {total }}=\int_{0}^{4}\left|v_{B}(t)\right| d t
$$

Below is a plot of the velocities versus time to see where they're positive and negative.

Find where the zeros of $v_{A}(t)$ and $v_{B}(t)$ are.

$$
\begin{array}{ll}
v_{A}(t)=3 t^{2}-3 t=0 & v_{B}(t)=4 t^{3}-8 t=0 \\
3 t(t-1)=0 & 4 t\left(t^{2}-2\right)=0 \\
t=\{0,1\} & t=\{-\sqrt{2}, 0, \sqrt{2}\}
\end{array}
$$

Therefore,

$$
\begin{aligned}
\left(s_{A}\right)_{\text {total }} & =\int_{0}^{4}\left|v_{A}(t)\right| d t & \left(s_{B}\right)_{\text {total }} & =\int_{0}^{4}\left|v_{B}(t)\right| d t \\
& =\int_{0}^{1}\left(-3 t^{2}+3 t\right) d t+\int_{1}^{4}\left(3 t^{2}-3 t\right) d t & & =\int_{0}^{\sqrt{2}}\left(-4 t^{3}+8 t\right) d t+\int_{\sqrt{2}}^{4}\left(4 t^{3}-8 t\right) d t \\
& =\left.\left(-t^{3}+\frac{3}{2} t^{2}\right)\right|_{0} ^{1}+\left.\left(t^{3}-\frac{3}{2} t^{2}\right)\right|_{1} ^{4} & & =\left.\left(-t^{4}+4 t^{2}\right)\right|_{0} ^{\sqrt{2}}+\left.\left(t^{4}-4 t^{2}\right)\right|_{\sqrt{2}} ^{4} \\
& =\left(\frac{1}{2}\right)+\left(\frac{81}{2}\right) & & =(4)+(196) \\
& =41 & & =200
\end{aligned}
$$

Therefore, particle A travels a total distance of 41 feet, and particle B travels a total distance of 200 feet.

